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We consider the fluid flow induced when free-surface travelling waves pass over 
a submerged circular cylinder. The wave amplitude is assumed to be small, and 
a suitably defined Reynolds number large, so that perturbation methods may be 
employed. Particular attentioii is focused on the steady streaming motion, which 
induces circulation about the cylinder. The viscous forces acting on the cylinder are 
calculated and compared with the pressure forces which are solely responsible for the 
loading on the cylinder in a purely inviscid flow. 

1. Introduction 
In this paper we consider the flow induced in an incompressible, viscous fluid when 

monochromatic free-surface waves propagate over a submerged circular cylinder 
whose generators are parallel to the wave crests. The dimensionless wave amplitude 
E is assumed to be small, whilst a suitably defined Reynolds number R, is assumed 
to be large, so that perturbation techniques may be used in the solution construction. 
The study relates to the practical areas of flow about the horizontal pontoons of 
semi-submersibles and tension-leg platforms, and wave energy devices. 

For an inviscid fluid the earliest work by Dean (1948), based on the conformal 
mapping technique, showed that at leading order, O(e) ,  there is no reflection of the 
incident waves. This result was confirmed by Ursell (1950), using a series of multipole 
potentials, from which complete details of the flow may be inferred. Subsequently 
Vada (1987) obtained both the first- and second-order diffraction potentials numeri- 
cally using a method based on Green’s second identity and a special Green’s function 
given by Wehausen & Laitone (1960). Vada showed, in particular, that Dean’s result 
of zero reflection coefficient extends to second order also, within the accuracy of his 
numerical method. This particular point was subsequently addressed by McIver & 
McIver (1990) and Wu (1991). Both note that the second-order reflection coefficient 
R2 may be expressed in terms of the first-order potential. McIver & McIver then show 
analytically that R2 = 0, whilst Wu achieves the same result numerically. Riley & 
Yan (1996) have confirmed the results of Vada (1987) for the first- and second-order 
diffraction problems, using a different numerical method, and have completed the 
second-order solution by including the time-independent contribution. Meanwhile, in 
a series of papers, Chaplin (1984a,b, 1992, 1993) has studied by both experimental 
and theoretical means the flow of a real fluid in configurations relevant to the present 
work. The earlier papers, Chaplin ( 1 9 8 4 ~ 4  are largely experimental, with a circular 
cylinder located beneath a free surface over which waves travel. The mass transport 
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flow around the cylinder is investigated, Chaplin (1984a), using flow visualization. 
For the cylinder at relatively large depth, good agreement with a theory that invokes 
the streaming velocity at the edge of the Stokes layer, formed on the cylinder surface, 
is obtained. In a second paper, Chaplin (1984b), the forces acting on the cylinder are 
measured. No detectable reflection at either second or third order in wave amplitude 
was detected, and the dominant nonlinear component of force acting on the cylinder 
was shown to be of third order in wave amplitude. More recently Chaplin (1992) has 
considered the general orbital flow about a circular cylinder, using boundary-layer 
techniques introduced by Stuart (1966) and Riley (1965, 1967). In an application 
to our title problem he acknowledges the need to introduce a potential vortex flow 
outside boundary layers at the cylinder surface, and approximates this by a classical, 
bound, vortex located at the centre of the cylinder. His most recent paper, Chaplin 
(1993), attacks the problem of uniform circular orbital flow in the presence of a 
circular cylinder at finite Reynolds number using the full Navier-Stokes equation. In 
the higher Reynolds number regime good agreement with a boundary-layer theory of 
Riley (1971) is recorded. The same problem is addressed by Stansby & Smith (1991), 
using the random vortex method. 

There is a sense in which Chaplin’s (1992) work anticipates that presented here. 
As already indicated, we assume that the incident wave amplitude is small and 
that the streaming Reynolds number is large so that boundary-layer techniques 
may be used, and a completely rational theory developed. Section 2 establishes the 
appropriate equations, and well-established techniques are used in 93 to develop a 
perturbation solution. In particular the steady streaming within the Stokes layer, 
thickness O(e /d ’2 ) ,  is determined. Most attention is focused on the flow in an outer 
boundary layer, thickness O(&-’/2), of steady streaming. In this outer boundary layer 
it is established that vorticity is transported by the Lagrangian, not Eulerian, mean 
velocity. The flow in the boundary layers induces a circulation about the cylinder, 
and a bound vortex is introduced that satisfies conditions not only at the cylinder 
surface, but also at the mean position of the free surface. The circulation associated 
with this vortex has to be determined with care, ensuring that the boundary-layer 
vorticity matches correctly with the (irrotational) outer flow. The technique adopted is 
described in detail by Riley (1981). The forces acting on the cylinder are determined. 
The normal stress is dominated by the pressure, leading to a fluctuating component 
with the fundamental frequency at O ( E )  and a second harmonic, together with a time- 
averaged component, at O(e2). The latter is a lift force, with no drag, on the cylinder. 
These results are in accord with those of Vada (1987). Viscous effects contribute to 
the pressure an unsteady term O ( E ~ / ~ ’ ~ ) ,  with the fundamental frequency, which 
is small and not calculated explicitly. Viscous effects are also responsible for a 
circulation about the cylinder, contributing an unsteady term O(e3)  to the pressure. 
Since the experiments of Chaplin (1984b) detect a strong third-order component in 
the fluctuating force we have calculated this contribution explicitly. The viscous shear 
stresses also have fluctuating contributions with both the fundamental and second 
harmonic frequencies, together with a time-independent part, all of which are smaller 
than their pressure-force counterparts by a factor O ( E / ~ ’ ~ ) .  We note that the time- 
averaged shear stress augments the lift force and also contributes a ‘drag’ force in the 
direction of propagation of the incident wave. 
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FIGURE 1. Definition sketch. 
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2. Governing equations 
Two-dimensional monochromatic waves propagate at the surface of an incom- 

pressible, viscous fluid of infinite depth over a submerged circular cylinder; the wave 
crests are parallel to the generators of the cylinder, see figure 1. If a is the radius 
of the cylinder, A, w the amplitude and frequency of the incident waves respectively, 
then with a as a typical length, c0-l a typical time and U, = a o  a velocity the 
non-dimensional equation for the stream function v may be written as 

where 

In these equations ( r ,  0 )  are polar coordinates with origin at the centre of the cylinder, 
and 8 = 0 coincident with the direction of propagation of the incident waves. The 
two parameters that characterize the flow are the Strouhal number c-l, and streaming 
Reynolds number R,, defined as 

where v is the kinematic viscosity. The velocity components (u , ,ug)  are defined in 
terms of the stream function as 

vg = -- 
' - r a e '  ar ' 

v 1 av 

Equation (2.1) is to be solved subject to the following boundary conditions: 

(2.5) 

V v + O  asy+-co,  (2.6) 
together with suitable wave conditions as x + kco, and free-surface conditions 
applied at the mean position of the free surface y = h = H / a ,  where H is the depth 
of the centre of the cylinder beneath the undisturbed position of the free surface. The 
coordinates (x,y) also have their origin at the centre of the cylinder. 
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3. Solution procedure 
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With E << 1 we expand the stream function as 

Y ( X ,  t )  = ~ v i ( ~ ,  t )  + E ~ { ~ ? ) ( x ,  t )  + ~ F ' ( x ) }  + c3y3(x, t )  + f4v4(x, t )  ..., (3.1) 

where at O ( f 2 )  we have anticipated that the time-averaged or steady flow, denoted 
by superscript (s), is non-zero. Riley & Yan (1996) have considered the flow under 
investigation here for an inviscid fluid. The leading-order term yl, first considered by 
Dean (1948) and Ursell(1950), has been calculated using a boundary-element method, 
as have the terms O(c2). In particular the results for confirm those previously 
obtained by Vada (1987 , and McIver & McIver (1990). The time-independent part of 
the solution at O(e2),  y i ) ,  has not previously been discussed. From our present point 
of view these results represent the leading-order flow outside any boundary layers 
that form at the cylinder surface, and are considered as known. 

Substituting (3.1) into (2.1) gives, at leading order, 

= 0, W 2 W )  
a t  

and, as already indicated, the solution for y1 is known. Since yl does not satisfy 
the no-slip boundary condition at the surface of the cylinder a boundary layer, the 
classical Stokes layer of thickness O ( V / O ) ~ / ~ ,  is required. Accordingly we introduce 
Stokes-layer variables as 

In the Stokes layer we expand the stream function in a manner similar to (3.1) as 

Y = €Yl(p, 0, t )  + 2{ Y ? ) ( ~ ,  8, t )  + Y ? ) ( ~ ,  el} + .... (3.4) 

Substituting (3.4) into the Stokes-layer equation gives, at leading order, 

with boundary conditions 

the required solution is 

where y1 = -1 - i, and cl(0) = cll(B) - icI2(0) is to be determined; the real part of 
any complex quantity is to be understood. The solution (3.7) is required to match the 
outer inviscid flow such that 

y1 = cl(B)(eYIP - y1p - l)eit, (3.7) 

It proves convenient to write 

~1 = yll(r, 0) cost + y12(r, 0) sint, Y1 = Y11(p, B)cos t + Y d p ,  0) sin t, 

so that the matching requirement now gives 

(3.9) 

1 h l  av12 (3.10) 
r= l  

c11= - [- 
2 dr r=l  
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where the terms on the right-hand side of (3.10) are known from the inviscid solution 
of Riley & Yan (1996). 

We turn next to the terms O(e2) in the Stokes-layer expansion (3.4). The time- 
dependent part YF) satisfies 

and the solution that satisfies the no-slip conditions 

(3.12) 

is 

where 
Y?) = {c21(0)eYZP - c1c’,peYlP + cZ2(O)p + ~23(0)}e~’~, (3.13) 

The solution (3.13) is required to match with the outer solution, so that 

as p + co. 
r=l 

If we write the known outer inviscid solution of Riley & Yan (1996) as 

(3.14) 

(3.15) 

then (3.13) requires 

(3.17) 

The remaining term within the Stokes layer at O(e2), the steady streaming Yf), 
satisfies 

a4 Y?) 
a P4 ao ap3 ap ap2ae . 

The solution of (3.18) which satisfies the no-slip condition 

a luf) 
= O  a t p = O ,  

yF) = dp 

(3.18) 

(3.19) 
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C26(8) = ; [Cl lCi*  - c12c;J - : [ C l l C i l  + c12c;2] 

Since c25 is uniquely determined at this stage, the solution (3.20) cannot match 
directly with the outer, inviscid solution of Riley & Yan (1996). For R, >> 1, which is 
the case we consider in detail, an outer boundary layer is required for the transition 
from the Stokes layer to the outer inviscid flow. To proceed we continue to substitute 
the expansion (3.1) into (2.1) to give at O(e2), O(e3),  O(e4) respectively 

(3.23) 

(3.25) 

The inviscid solution I# determined by Riley & Yan (1996) has already been 
employed in (3.15) above. However there is a correction to this due to the outflow 
from the Stokes layer, velocity -$c;(8)ei*/d'2. But since our interest lies in the case 
R,, >> 1 this is ignored, as is the contribution to Y t )  that results from it. Consider 
next equation (3.24) which we may integrate to give 

where &r, 0) is an unknown function of r and 8 only. We may use (3.26) to eliminate 
y 3  from (3.25) and write 

(3.27) 

where V,!, F'; are the components of the Stokes drift velocity in the r- and &directions 
respectively, determined in terms of the known quantities yll and ~ 1 2 .  Since our main 
concern is with the case R, >> 1, for which the viscous flow regime outside the Stokes 
layer is itself of boundary-layer character, we only 
drift velocity close to the boundary. Accordingly we 

require the form of the Stokes 
write 

2 l r = l  ( r  - 1) + ..., (3.28) 

where 

(3.29) 

(3.30) 

may be evaluated from the known, leading-order inviscid solution. For R, >> 1 the 
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outer boundary layer has thickness 0 ( K ' I 2 ) ,  and is therefore thicker than the Stokes 
layer by a factor O(e-'). Within it we write 

(3.31) 

so that, in terms of stream function and vorticity we have the boundary-layer equations 

where 

(3.33) 

(3.34) 

We note that in (3.32) the convective velocity for the vorticity is the Lagrangian mean 
velocity. At the inner edge of this outer boundary layer, 2 = 0, we require 

(3.35) 

say, whilst at the outer edge, as A -+ 00, we have 

(3.36) 

say. These conditions must be supplemented by the periodicity condition u t )  = 

uf'l , and similar for vorticity and stream function. Note also that the condition 
ueln=o = Vi is used in the construction as a condition on the vorticity at 2 = 0, 
by standard means. Both Vi and V, may be calculated from the inviscid solution 
determined by Riley & Yan (1996). However, the boundary conditions (3.35) and 
(3.36) do not uniquely define the solution, since a potential vortex can be introduced. 
This difficulty has been encountered previously by Riley (1978) in a not dissimilar 
context, and by Riley (1981) in a different context. The resolution of the difficulty, 
which in the present case leads to a unique vortex strength, lies in the proper matching 
of the boundary-layer vorticity with the outer flow. To be sure, we have required 
&f) -+ 0 at the edge of the boundary layer in (3.36); but this limit has to be achieved 
smoothly and we shall demonstrate this point in 94. 

To supplement the condition on the streaming velocity uf) at the edge of the bound- 
ary layer in (3.36) we require a potential-vortex contribution. Following Zapryanov, 
Kozhoukharova & Iordanova (1988) we adopt a system of bipolar coordinates ( q ,  () 
which are related to the Cartesian, (x, y), and polar, (r, 0) ,  coordinates by 

L O  
0=2n 

(3.37) 

where c and l o  are constants to be determined such that 5 = 0 coincides with 0 = 0 
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at r = 1, and q = qo corresponds to r = 1. This leads to 

c = (h2 - 1)1/2, qo = cosh-lh = -In {h  + (h2 - 1)'l2}, lo = sin-' {(h2 - 1)lI2/h}. 

B. Yan and N. Riley 

(3.38) 
In this coordinate system the stream function for the vortex located at (x,y) = 

(0, h - (h2 - 1)1'2}, wU, is given by 

rvl 
271 wu = --, (3.39) 

The contribution which this makes to the velocity component $) at the edge of the 
boundary layer in (3.36) is 

(3.40) 

Before leaving this section we make two points. First we note that the differences 
between our analysis for the flow in this outer boundary layer, and that of Chaplin 
(1992), are that Chaplin does not include the contribution from the radial component 
of the drift velocity in the equation corresponding to (3.32) and his outer boundary 
condition corresponding to (3.36) is incomplete. Second we observe that both the 
outflow from the Stokes layer, and the presence of the vortex (3.39) will each affect 
our outer, inviscid, free-surface flow at O(e3) .  

4. Results and discussion 
Before we describe our calculation method for the outer steady streaming boundary- 

layer flow, and assess the results from such calculations, we look at some of the 
ingredients that influence the flow. Consider first the boundary conditions (3.35) and 
(3.36). The velocities prescribed at 1, = 0, and as 3, -+ 00, clearly play a significant 
role in the dynamics of the boundary-layer flow. We note that the velocities Vi in 
(3.35), and V, in (3.36), are both calculated from the inviscid solution of Riley & 
Yan (1996), the former indirectly through c25 in (3.21). We also note that >> IV,l 
and so we concentrate only on the former. However we note that the outer boundary 
condition must also be supplemented by a contribution from the potential vortex 
solution (3.40), for which the circulation r is not determined a priori. Consider K, 
as shown in figures 2(a), 2(b). In figure 2(a) the distribution of velocity at r = 1 
when h = 1.5 for various values of k is shown, whilst in figure 2(b) the distribution 
for various cylinder depths with k = 1 is shown. These are typical, and there are two 
important points to note. The first is that the greatest activity is always at the top of 
the cylinder, at a point close to the free surface, as may be expected. The second is 
that the velocity is always negative, which indicates that the Reynolds stresses acting 
within the Stokes layer induce a negative circulation at the edge of it. Since the 
effect of V, is small, and itself has no circulation, we may suppose that a negative 
circulation will be transmitted to the flow outside this outer boundary layer. Consider 
next the circulation induced outside the boundary layers by the bound vortex (3.39). 
The slip velocity induced by this at r = 1 is given by (3.40), and is shown in figure 
3 for various values of h, with r = 271. As may be anticipated, when the cylinder is 
close to the free surface high velocities are induced at the top of the cylinder 6' = $. 
For large depths there is almost uniform flow at the cylinder surface. The value of 
r ,  for any particular situation, must be determined with care as discussed below. 
However, as we have argued above, we may expect r to be negative. Finally consider 
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FIGURE 2. Velocity at the inner edge of the outer streaming boundary layer, (a) for different 

wavenumber k with depth h = 1.5, (b)  for different depth h with wave number k = 1.0. 
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FIGURE 3. The slip velocity induced by the free-vortex flow at the surface of the cylinder, for 
different values of depth h with r = 271. 

the Stokes drift velocity. In (3.32) the 8-component, which enhances convection of 
vorticity in the &direction, is denoted by V t l r = l .  This quantity is shown in figures 
4(a), 4(b). In figure 4(a) we see the drift velocity for h = 1.5, when the cylinder is 
close to the free surface, for various values of k ,  whilst figure 4(b) shows the effect 
of increasing depth with k = 1.0. Again the greatest effect occurs at the point of 
closest approach of the cylinder to the free surface. We also note that in all cases the 
velocity is negative which implies that the Stokes drift velocity augments convection 
of vorticity in the clockwise sense. We also observe that as the wavenumber increases, 
or the depth increases, the effect of the Stokes drift diminishes. This trend is similar 
to that noted in relation to the tangential component of velocity at the edge of the 
Stokes layer, shown in figure 2. 

We next consider the determination of a unique value for r ,  for given values of h 
and k .  This is determined by a proper matching between the vorticity in the boundary 
layer with that outside it. Of course, in the present case, the flow outside the boundary 
layer is irrotational, but nevertheless to set C$) = 0 at I = I,, where A, is the point 
chosen to represent the outer edge of the boundary layer in the computations, is 
not sufficient. We follow the approach of Riley (1981), where the flow outside the 
boundary layer was characterized by closed streamlines in a simply connected region, 
so that the inviscid outer flow was one of uniform vorticity. Define 
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FIGURE 4. The Stokes drift velocity in the &direction at the surface of the cylinder (a) for different 

wavenumber k with depth h = 1.5, (b) for different depth h with wavenumber k = 1.0. 
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FIGURE 5. Variation of Q with r for different values of 1, and for h = 1.5, k = 0.3. 

Riley demonstrates that, for a given A,, we may expect SZ to pass through a minimum 
for some critical value o f f ,  say fc, and that as 1, increases fc becomes more sharply 
defined. To illustrate this we consider the case h = 1.5,k = 0.3 and in figure 5 we 
show the variation of SZ with f for various values of 1,. It is clear from this diagram 
that an accurate estimate of f can be made. 

To integrate equations (3.32), (3.33) with the boundary conditions (3.35), (3.36) 
and the further condition of periodicity we use standard finite-difference techniques. 
Since, as we have already indicated, we anticipate that the steady streaming will be 
uni-directional, in a clockwise direction, we integrate equation (3.32) in the direction 
of 9 decreasing. Derivatives in the streamwise direction are represented by second- 
order-accurate backward differences, whilst cross-stream derivatives are represented 
by central differences. For each pair of values h, k we must choose a suitable value of 
Am to represent the edge of the boundary layer. For the cases considered, 1, lies in 
the range 10 to 25 with the larger values required for the larger values of h and k .  
In the discretized equations the mesh sizes varied, with 68 in the range n/60  to n/40, 
and 61 in the range 0.05 to 0.1. In general the finer mesh was used for the smaller 
values of h and k. For a given h, k and suitably chosen values of A,, 68 and 6 1  the 
magnitude of the circulation outside the boundary layer, fc, must be determined. To 
achieve this we first fix f and then integrate (3.32), (3.33) over the range (27c,O), using 
successive sweeps until the periodicity condition is satisfied. Varying f then allows us 
to minimize SZ ,  defined in (4.1), and so determine the appropriate value, fc. Table 1 
shows f for various values of h and k .  The values of f shown in this table confirm 
our earlier predictions that the intensity of the streaming motion about the cylinder 
decreases as both the cylinder depth increases, and the wavelength of the incident 
wave decreases. We note that in the limiting case of large h and small k the flow will 
approximate a uniform orbital flow with fc = Tu = - 6 n e ~ ~ ~ ~ .  The results of table 1 
are not inconsistent with this, with the ratio f c / T u  decreasing towards unity as we 
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1.5 2.0 3.0 
-22.1 1 -10.61 -4.76 

k\h 
0.3 

2.0 -2.13 -3.71 x lo-' -2.41 x lop3 
3.0 -9.40 x lo-' -3.51 x lo-* -1.10 x 

TABLE 1. The critical values of the circulation, Tc,  for various values of h and k .  

1.0 -6.65 -2.19 -2.50 x lo-' 

0 ,  

-2 

vp -4 

-6 
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A e=o.5 x - 8= 1.5 x 

0 2 4 6 8 10 

h 
FIGURE 6. Velocity profiles for the tangential steady streaming in the outer boundary layer for 

h = 1.5, k = 0.3. 

move out along the first row or up the last column. In figure 6 we show velocity 
profiles for the tangential steady streaming velocity in the outer boundary layer. This 
is for the case h = 1.5, k = 0.3 for which the steady streaming is quite vigorous. As we 
see, the flow is uni-directional in the clockwise direction. The profiles themselves are 
unremarkable; but the diagram does serve to illustrate the role of the outer boundary 
layer in adjusting the tangential velocity at the edge of the Stokes layer to the inviscid 
potential-vortex flow. 

Next consider the force acting on the cylinder. For the normal stress we require 
the pressure. If a scale for this is taken as pga, where p is the density, and g the 
acceleration due to gravity, then in the outer, inviscid, region we have Bernoulli's 
equation 
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FIGURE 7. Force coefficients at the cylinder due to normal stresses (equation (4.3)) for h = 1.5,2.0: 

(a)  oscillatory force in the x- or y-direction, ( b )  mean vertical force. 

where 4 is the velocity potential. For R, >> 1, which is the case under consideration, 
this is the pressure transmitted to the cylinder surface through the thin boundary 
layers at it. For the basic inviscid flow we write (4.2) as 

p = e(p11 cos t + p i 2  sin t )  + e2(p21 cos 2t + p22 sin 2t) + e2p02 + ..., (4.3) 

where the coefficients p i j  depend only upon the spatial variables, and have been 
calculated by Riley & Yan (1996). There is a correction to the leading term of (4.3), 
with the fundamental frequency, due to outflow from the Stokes layer, O(e2/R,?), and 
due to the presence of the vortex (3.39), O(e3). The latter also makes a contribution 
O(e4) to the time-averaged element of (4.3). The viscous component of the normal 
stress makes a contribution O(e3/Rs) to the leading term of (4.3). From these 
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FPX FPY 
k\h 1.5 2.0 3.0 1.5 2.0 3.0 
0.3 5.29 1.92 5.92 x lo-’ 7.16 2.24 6.34 x lo-’ 
1 .o 1.55 3.06 x lo-’ 1.33 x lo-’ 2.09 3.55 x lo-’ 1.42 x lo-’ 
2.0 2.75 x lo-’ 1.82 x lo-’ 1.55 x 3.67 x lo-’ 2.10 x lo-’ 1.64 x 
3.0 5.87 x lo-’ 4.70 x 6.28 x lo-’ 7.84 x lo-* 5.62 x lop4 6.65 x lo-’ 

TABLE 2. The force coefficients Fpx and FPy for various values of h and k .  

corrections we calculate explicitly only the term O(e3), due to the presence of the 
vortex, since Chaplin (1984b) has detected a strong third-order component in his 
measurements of the fluctuating force. We denote this contribution to the pressure by 

(4.4) 

Consider first the force on the cylinder due to the normal stresses obtained from (4.3). 
If we write this as F ,  = (Fpx,Fpy)  then we have 

(4-5) 

with a similar expression for the y-component Fpy. The phase angles ai (i = 1,2) have 
not been calculated. It is known, Vada (1987), that the force coefficients IFpix] = lFpiyl 
(i = 1,2), and in figure 7(a) we show the force coefficients Fpix as a function of 
wavenumber k for varying h. The mean, or time-averaged horizontal force FpoX = 0, 
however Fpoy, the time-averaged vertical force is non-zero and shown in figure 7(b). 
We note that all the force coefficients have a maximum close to k = i. The results 
shown in figure 7 agree with those presented by Vada, and are included here for 
completeness. We next consider the third-order normal stresses (4.4), due to the 
induced circulation about the cylinder, which make a contribution 

(4.6) 

e3(pul cos t + pu2 sin t). 

Fpx = eFplx cos ( t  + a l )  + e2FPzx cos (2t + a2) + e2Fpo, + ..., 

c3FpUx cos ( t  + a,~), e3Fpy cos ( t  + au2), 

to the fluctuating force. F,,,, Fpy  are shown in table 2 for the examples of table 1. As 
the cylinder approaches the free surface the relatively large numerical values of these 
quantities suggest that they will be detected in an experiment. 

For the viscous shear stress we again choose pga as the scale so that the dimen- 
sionless shear stress, z, may be written as 

cos2t + - a 2 y 2 2  sin 2t) + 62% + ...} , (4.7) 
d 2  Y21 + e2( - 

a p 2  a p 2  8P2 

where i = 1,2, Yli,  YZi are determined from (3.7) and (3.13) respectively and Y20 = Y t )  
in (3.20). If the force on the cylinder due to the stress in (4.7) is denoted by 
F, = (Fux,Fuy) then we have 

F&!’2/e = fFuix  cos ( t  + pi) + E ~ F ~ ~ ~  cos (2t + p2) + e2Fuox + ..., (4.8) 

with a similar expression for Fuy; the phase angles j i ( i  = 1,2) have not been 
calculated. The force coefficients FUix and F,,, (i = 0,1,2), are shown in figures 8(a), 
8( b) respectively. We again see that for these representative cases the force coefficients 
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FIGURE 8. Force coefficients at the cylinder due to shear stresses for h = 1.5,2.0: 

(a) in the x-direction, ( b )  in the y-direction. 
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exhibit maxima close to k = i. Note also that the time-averaged force components 
FUox and FUoy are both non-zero. The latter enhances the mean lift coefficient, whilst 
the former yields a ‘drag’ force in the direction of wave propagation. A comparison 
of (4.5) and (4.8) shows that the viscous shear stress makes a contribution to the 
overall force on the cylinder that is less than the pressure force by a factor O ( E / ~ ’ ~ ) .  

The authors are indebted to the Marine Technology Directorate for financial 
support. 
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